
Programming a Suicide
Chess playing program

Diploma in Computer Science

Churchill College

September 25, 2019

Proforma

Name: djib
College: Churchill College
Project Title: Programming a Suicide Chess playing program
Examination: Diploma in Computer Science, July 2006
Word Count: 11574 words1

Project Originator: djib
Supervisor: William Tunstall-Pedoe

Original Aims of the Project

The aim of the project was to program a computer to play Suicide Chess.
The program was to be designed using common chess programming algo-
rithms such as alpha-beta pruning. I was planning to test its level using
suicide chess problems and playing against Sjeng, a well known suicide chess
program.
I then expected to improve my program by adding extensions such as move
ordering, a transposition table, intelligent handling of time, . . .
I was not intending to design my own user interface, but instead use XBoard,
a famous protocol compatible with many interfaces.

Work Completed

I programmed every feature I suggested in my project proposal.
The computer player uses Alpha-Beta Pruning with Iterative Deepening
and Principal Variation First Search.
I have fully implemented the XBoard protocol.
To test my program I have built-in a collection of 23 endgame problems. I
also played it and won against other well known Suicide Chess programs.
I implemented these extensions:

• an opening book library of 25 variants,

• two static evaluation functions, one for midgame and one for endgame,
using Piece Values, Square Weights and Mobility,

• Adaptive Depth, Quiescence Search and Move Ordering in the alpha-
beta pruning.

Special Difficulties

None

1Word count given by the LATEX suite Kile: includes titles, code, pseudo-code and
footnotes. Original Aims of the Project: 93 words. Work Completed: 98 words.

i

Declaration

I, djib of Churchill, being a candidate for the Diploma in Computer Sci-
ence, hereby declare that this dissertation and the work described in it
are my own work, unaided except as may be specified below, and that the
dissertation does not contain material that has already been used to any
substantial extent for a comparable purpose.

Signed

Date

ii

Contents

1 Introduction 1

2 Preparation 5
2.1 Suicide Chess Theory . 5
2.2 Language . 7

2.2.1 Java . 7
2.2.2 Eclipse and Subversion 7

2.3 Chess Programming . 7
2.4 Board representation . 8

2.4.1 Array representation 8
2.4.2 Bitboard representation 8

2.5 Searching Algorithms . 10
2.5.1 Evaluation . 10
2.5.2 Searching and the MinMax algorithm 10
2.5.3 Alpha-Beta pruning 11

2.6 XBoard, an interface for Chess programs 12
2.6.1 Problems with XBoard 13
2.6.2 Playing on the FICS 15

3 Implementation 17
3.1 Organisation . 17
3.2 Type safety . 18
3.3 Class Board . 18

3.3.1 Datafields . 18
3.3.2 Functions . 20
3.3.3 Constructors . 22
3.3.4 Evaluation function 23

3.4 Rules and Move Generation 26
3.4.1 Pieces except Pawns 26
3.4.2 Pawn . 27
3.4.3 Storing legal moves . 27

3.5 XBoard protocol . 28
3.6 Searching . 29

iii

3.6.1 MinMax . 29
3.6.2 Alpha-Beta pruning 30
3.6.3 Thinking output . 31
3.6.4 Iterative Deepening and Principal Variation First . . . 32

3.7 Extensions . 33
3.7.1 Opening Book . 33
3.7.2 Quiescence search . 33
3.7.3 Adaptive Depth search 35
3.7.4 Move ordering . 36

4 Evaluation 37
4.1 Efficiency . 37
4.2 Evaluation function . 38

4.2.1 Evaluation function in the endgame 38
4.2.2 When does the endgame start? 38
4.2.3 Evaluation function in the midgame 39
4.2.4 A closer look at the Cheeseparing Version 40
4.2.5 Versions with mobility 41

4.3 Search Speed . 41
4.3.1 MinMax vs Alpha-Beta 41
4.3.2 Alpha-Beta efficiency and move ordering 42

4.4 Problem solving (Search extension efficiency) 42
4.5 Matches against Sjeng and KKF 45

4.5.1 Preliminary comments 45
4.5.2 Results . 46

5 Conclusion 49

Bibliography 51

A Relevance of game statistics 53

B A game between Sjeng and my program 55

C Configuration file 58

D Typical program output 60

E Implemented XBoard commands 62

F Suicide Chess problems (study positions) 65

G Project Proposal 67

iv

List of Figures

1.1 Justification of the Stalemate rule 2

2.1 Pieces in Losing Chess . 6
2.2 Representing a board with a 8 array 8
2.3 Bitboard representing the position of white pawns in the be-

ginning of the game. 9
2.4 The MinMax algorithm . 11
2.5 The Alpha-Beta pruning algorithm: dotted nodes will not be

examined. 12
2.6 The XBoard protocol Version 2 (excluding features that I

did not implement). Most commands are presented in Ap-
pendix E. For further explanations read [16, XBoard Chess
Engine Communication Protocol] 14

3.1 Two opening move sequences leading to the same result . . . 34

4.1 Method timings . 37
4.2 Result of matches of different version of my program. The

result are written as: games won by the program in the first
program - games won by the second program - draw 40

4.3 Comparison of the number of nodes examined by the MinMax
algorithm (MM) and the Alpha-Beta pruning algorithm (AB)
in typical Suicide Chess situations 42

4.4 Some test positions . 43
4.5 Time (in centiseconds) to generate a move. Comparison of

Alpha-Beta pruning (AB), Move Ordering (MO), and Prin-
cipal Variation First Search (PV) 44

4.6 Efficiency in problem solving. The problems are available in
FEN notation in Appendix F 45

4.7 Result of matches between different versions of my program
and Sjeng or KKF . 46

4.8 A 200 games 10 seconds per game match between my Suicide
Chess program djib’s SuShi, Kamikaze Version and Sjeng . . 47

A.1 Relevance of game statistics 54

v

Acknowledgements

Thank you to my project supervisor, William Tunstall-Pedoe, for guiding
me in the right tracks.
Thank you to Dr. John Fawcett, my director of studies for his help and
availability during all the year.
Thanks a lot to Rémi and Johann for showing interest in my project and
letting me explain my problems to them. It helped me a lot.
Thanks to Yann for introducing me to the power of Eclipse and Subversion.
Thanks to Simon for the long discussions about our respective projects.
Thanks to James for lending me his book.
Thanks to all my fellow Diploma and Part II General students for this
incredible year.

vi

Chapter 1

Introduction

In 2002, I spent 4 weeks on a sailing boat. One of the main distraction
on board was playing chess. A friend introduced me to the concept of
Suicide Chess1, a chess variant. Neither of us knew much about Suicide
Chess theory, but we found that games were quicker and more dynamic
than Chess.

In this report I shall consider that the reader is familiar with Chess.
They should at least know how pieces move, how pawns promote to other
pieces and what an “en passant” capture is.

The rules of Suicide Chess are the following[1]:

• The opening setup is as in normal Chess. All pieces move as in normal
Chess (but see below for the King).

• Capturing is compulsory. When a player can capture, but has different
choices to capture a piece, he may choose which piece to capture.

• There is no check or checkmate. The king plays no special role in the
game, and can be taken as any other piece.

• Pawns may also promote to Kings.

• Castling is not allowed.

• Stalemate is a win for the stalemated player. (International rules)

In my project proposal, I wrote:

In the case of stalemate, the winner is the player who has the
smallest number of pieces. If the number is equal, the game is
drawn.

1Suicide Chess is also called Losing Chess, Giveaway Chess, Killer Chess or Take-all
Chess. It is called Vinciperdi in Italian and Qui perd gagne in French[1]

1

2 CHAPTER 1. INTRODUCTION

0Z0Z0Z0Z
Z0Z0Z0Z0
0Z0Z0Z0o
Z0Z0ZpZ0
0Z0Z0O0Z
Z0Z0oPZN
0Z0ZPZ0O
Z0Z0Z0Z0

White plays and wins.
Solution:

1. Nh3–g1! h6–h5
2. h2–h3 h5–h4

White cannot move anymore. With the FICS rules, this would be a victory
for Black that has less material than White. However, with the International
Rules, the ones I chose, that position is a win for White.

Figure 1.1: Justification of the Stalemate rule

Those are the Free Internet Chess Server (FICS) rules, but they are less
logical[15] than the ones above: it would be just like in Chess, looking at the
material advantage when a player is in checkmate to decide who is winning.
To convince yourself, just look at the example Figure 1.1.

Programming a Suicide Chess player was for me an opportunity not
only to discover more about that game I enjoyed so much but also to apply
some interesting software engineering techniques. Moreover I thought that
programming such a game would be less complex than Chess, and thus more
adapted for a diploma project, but as a matter of fact, Stanislav Goldovski,
a pioneer in Suicide Chess theory proved me wrong:

“Losing chess does involve theory and strategy. Moreover, it
seems to be a very complicated and profound one. Once basic
tactical blunders can be avoided, the strategic depth becomes ap-
parent - mobility, space, development, weak squares, king safety,
pawn structure. Indeed, it is even possible that the game
may rival regular chess in profundity. For most players Los-
ing Chess is still in its “romantic” period, when tactical battles
usually rage, but many have already discovered its deep strategic

3

side, things we could only dimly see before”.

There already exists several Suicide Chess programs on the Internet.
Some are no longer maintained or even available on the Internet, some others
are not free. I managed to play against the following three programs:

• Losing Chess on http://play.chessvariants.org/erf/LosingCh.

html which is terribly poor,

• KKFChess[5], a rather good program against which I sometimes man-
aged to win,

• Sjeng [17], a reference:

“In suicide and losers chess Sjeng beats all but the very
best humans, and will beat non-specialised programs easily”.

In Sjeng ’s known bugs list, the author wrote “Loses sometimes” which
summarises how good the program is. This program is open-source
though there is now a version called Deep Sjeng that costs 40 euros
and that is said to be even better.

A longer list is available on [4, ICGA: Losing Chess Information].

http://play.chessvariants.org/erf/LosingCh.html
http://play.chessvariants.org/erf/LosingCh.html

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preparation

When I started this project, I knew nothing about artificial intelligence
and how to write game programs. My project supervisor guided me by
giving me the right keywords: static evaluation function, minmax, alpha-
beta pruning, iterative deepening, . . . , and during the first few weeks of my
project I researched those terms.
I also read the book [12, Computer Gamesmanship].

2.1 Suicide Chess Theory

I found a few interesting articles ([8], [13] and [1]) about Suicide Chess
strategy but the content was often quite limited. It is not until much later
that, searching for webpages in French, I came across Fabrice Liardet’s
fantastic [14, Pion.ch], the only page that deals with every aspect of the
game, from the opening strategy to the endgame. This website also goes
into much more detail than every other website.

Unfortunately, though a few people programmed Suicide Chess comput-
ers, I didn’t find any webpage about how to actually implement the basic
concepts of Suicide Chess. For example, in Chess, it is of common knowledge
that the Queen has a value of 9 pawns, a Rook 5 pawns, a Bishop 3 and a
half, and a Knight 3. I based my experiments on Stanislav Goldovski’s
table[7] (cf Figure 2.1). I will refer to that table later in the choice of
values for my evaluation function. I will also explain how I read some of
Sjeng source code to try and design a better evaluation function than the
one I used initially.

1zugzwang: German for “compelled to move”. It is a situation in which playing is a
disadvantage and leads to losing. If one could “pass” that would not happen.

5

6 CHAPTER 2. PREPARATION

Piece Advantages Drawbacks

King The most important piece. Its
safe moves are often needed to
avoid zugzwang1.

Too slow for other tasks.

Queen Very useful for middle-game
tactics, for attacking the king,
weak squares, etc.

Dangerous in open positions,
in the endgame.

Rook Best endgame piece, quick and
powerful.

Can easily turn into a ‘loose
cannon’.

Bishop Good for endgame. Also for
draws (due to opposite colour
bishops).

See for Rook. Much worse
even.

Knight Very good for destroying pawn
formations, for ‘forking’ weak
squares.

Too immobile, very bad in the
endgame.

Pawns Very useful for restriction of
the opponent’s pieces, and also
destroying pawn formations.

Slow, immobile. Often dan-
gerous when it comes to pro-
motion.

Figure 2.1: Pieces in Losing Chess

2.2. LANGUAGE 7

2.2 Language

2.2.1 Java

To implement my program I decided to use Java for the following reasons:

• Java is the language taught in the course Foundations of programming,

• Java is cross platform,

• I like the type-safety of the language and the high level datastructures.

I had to test that Java could interact with XBoard, but since Java pro-
grams can read and write from and to the standard input/output there was
no problem.

I also discovered later in my project that Java can generate documen-
tation files automatically (using javadoc), provided that the programmer
respects certain formatting rules. This is a feature that I really appreciated
because it forced me to write coherent comments for every function I was
programming.

2.2.2 Eclipse and Subversion

To program, I used Eclipse. Eclipse is an amazing IDE, and along with
Subclipse, a plug-in that allows interfacing Subversion, a version control
system, it provides the best environment for developing in Java.

I used a Subversion server running on my own computer to do backups
of each change in the source, and I did manual backups on an external drive
every week to avoid disaster. Being able to revert to any previous version is
a feature that I really appreciated.

2.3 Chess Programming

I found many pages on the Internet about Chess programming, but the
website that has been the most useful is by far [10, GameDev.net]. Not only
did it explain every important component, but it also proposed an order for
implementing those components:

“In order to play chess, a computer needs a certain number
of software components. At the very least, these include:

* Some way to represent a chess board in memory, so that it
knows what the state of the game is.

* Rules to determine how to generate legal moves, so that
it can play without cheating (and verify that its human
opponent is not trying to pull a fast one on it!)

8 CHAPTER 2. PREPARATION

-5 -4 -3 -2 -1 -3 -4 -5

-6 -6 -6 -6 -6 -6 -6 -6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

6 6 6 6 6 6 6 6

5 4 3 2 1 3 4 5

Figure 2.2: Representing a board with a 8 array

* A technique to choose the move to make amongst all legal
possibilities, so that it can choose a move instead of being
forced to pick one at random.

* A way to compare moves and positions, so that it makes
intelligent choices.

* Some sort of user interface”.[10]

That is the order that I chose for implementing my program.

2.4 Board representation

2.4.1 Array representation

Probably the most intuitive way of representing a board is a 2 dimensional
array of size 8 × 8, each element in the array being a byte coding for the
piece on the board (see Figure 2.2).

Instead of that representation, it is also possible to store for each piece
type an array with the square(s) it is on. This representation has a major
drawback: is not convenient for knowing what piece is on a square.

Even though those representations are quite intuitive, they are also quite
inefficient, and in games like chess, played on a 64 square board, bitboards
are more often used nowadays.

2.4.2 Bitboard representation

Instead of an array representation, I have decided to use a bitboard repre-
sentation because it is more challenging and also more efficient.

The bitboard representation was developed by the Kaissa team in the
Soviet Union in the late 1960s. It is becoming increasingly popular due to

2.4. BOARD REPRESENTATION 9

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

Figure 2.3: Bitboard representing the position of white pawns in the begin-
ning of the game.

the fact that 64, the number of squares on the board, is the size of one word
(or two) on some computers nowadays, and it will be on most computers in
the near future. My computer is a 32 bit architecture and I would expect
my program to be quite a lot faster on a 64 bit architecture2.

“On 32-bit microprocessors, many of the operations we want
to do on bitmaps are not efficient because they have to be done
piece-meal using 32-bit registers. For AND, OR, XOR and sim-
ilar operations, this doesn’t hurt much, but for shifting, and,
more importantly, finding the first one-bit that is set, current
machines don’t offer any features to make these operations ef-
ficient. [. . .] It is highly likely that future chess programs will
migrate to this representation or be left behind in performance.
[. . .] For now (2004) the bitmap and offset approaches seem to
be nearly equal, with the one exception that the evaluation using
bitmaps is always going to be significantly faster”[9].

A bitboard is a 64bit number where each bit represent one square on the
board, and the bit value represents the presence or the absence of a piece
on that square.
Typically, a chess board would be represented using twelve 64bit numbers
representing the positions of white kings3, white queens, white bishops,
white knights, white rooks and white pawns (cf. Figure 2.3), and 6 other
numbers for black.

The bitboard representation has the advantage of being very versatile
compared to array representation. For example if you want to know all

2Sun released a 64 bit version of the Java virtual machine
3There might be more than one king in Suicide Chess since pawns can promote to king

10 CHAPTER 2. PREPARATION

squares with a white piece on them, just OR the six white bitboards. If you
want to know all free squares, OR the 12 numbers and then invert the result.

Efficiency is easily understandable: finding the white queen position is a
matter of loading the white queen bitboard and then finding the first one-bit
that is set. On an array representation, this would require loading up to 64
numbers in memory.

More about the different board representation and the efficiency of bit-
boards can be found on [9, Dr. Robert Hyatt’s webpage]. In particular,
bitboards can be used to easily generate legal moves, using shifting and
rotated bitboard [6], but I didn’t use that method as it is very advanced.

2.5 Searching Algorithms

2.5.1 Evaluation

Suicide Chess is defined as a game of perfect information, because both
players are aware of the entire state of the game at all times: just by looking
at the board, you can see which pieces are alive and where they are located.
From a position, one can estimate and tell which player has the highest
chances of winning. This process is called evaluation and is a function of
the position. Typically a positive evaluation value represents an advantage
for White, and a negative is an advantage for Black.

A few Chess programs in the past have used only a static evaluation
function4, but an evaluation function is often not good enough to tell, just by
looking at a position, which move is the one that will give the best outcome
for the current player. Even humans, that are very good at intuitively
spotting a few possible good moves, have to analyse ahead to see if those
moves will turn out to be good indeed, or bad. This is called searching.

2.5.2 Searching and the MinMax algorithm

From any arbitrary position in Suicide Chess, it is possible to construct a
search tree, where the root is the current position, its children are the
positions after a legal move from one player, its grandchildren are positions
after a legal move from one player and then a legal move from the other
player, etc., alternating players, until one side exhausts all possible legal
moves.

Given any position, is theoretically possible to look at the outcome (the
leaves of the search tree) of every move and choose the move that guarantees
the best outcome. Unfortunately the search tree is so big in Suicide Chess
that it is impossible to analyse all branches down to the leaves. Instead,
we will search the tree to a fixed depth (called ply), and then estimate how
good the resulting position is using the evaluation function.

4The TECH program is an example[12].

2.5. SEARCHING ALGORITHMS 11

40 30 60 40 20 10 50 10

40 60

40

20 50

20

40
Maximising node

Minimising nodes

Figure 2.4: The MinMax algorithm

MinMax5 is the most common algorithm in two player games of perfect
information, where each player is supposed to play rationally6. It relies on
the fact that each player will always pick the best move they can, ie. the
one that has the best evaluation value. In other words, White will try to
maximise the evaluation value and Black will try to minimise it.

The algorithm operates as follows: each node at the chosen search depth
in the tree is evaluated using the evaluation function. The parents are then
attributed the maximum (if it is White’s turn at that depth) or the minimum
(if it is Black’s) of their children’s values. Working this way up the search
tree, the move that will end up with the best value for the current player
will be chosen as the best move (cf. Figure 2.4).

2.5.3 Alpha-Beta pruning

Alpha-Beta pruning is an improvement of MinMax search. It is quite sim-
ilar to MinMax but is avoids useless calculation. In other words it stops
evaluating a branch in the search tree if this branch has been proved to be
worse than a previously examined branch.

In order to do so, we need two values, often called α and β that hold
the lowest score that White (the maximising player) can achieve and the
highest score that Black (the minimising player) can achieve respectively.
Usually α is initialised to −∞ and β is initialised to +∞ (closer bounding
values can be used, but do not guarantee a result).

5The MinMax algorithm is sometimes also called MiniMax. I have chosen to use
MinMax in this report

6From Sjeng documentation, I read that it does not use MinMax but Proofnumber
Search when playing Suicide Chess.

12 CHAPTER 2. PREPARATION

40 30 60 40 20 10 50 10

40 60

40

20 50

20

40
Maximising node

Minimising nodes
α = −∞

β =∞

β =∞ β =∞β = 40
α =/////−∞= 40

β =///∞= 40

α =/////−∞= 60

α =/////−∞= 40

α = 40

α = 40

β =///∞= 20

Figure 2.5: The Alpha-Beta pruning algorithm: dotted nodes will not be
examined.

When in a branch β ≤ α, that branch can be pruned because it will not
improve either side’s current best score (cf Figure 2.5).

2.6 XBoard, an interface for Chess programs

Though I like graphics, I didn’t want to design a user interface because
interfaces take a long time to develop. I wanted to focus my available time
on the algorithmic aspects of the project.

XBoard is a standard graphical interface for playing Chess. It was first
developed to interface GNUChess but then most programs started using it.
There is another protocol, the Universal Chess Interface, but I decided not to
use it before writing the project proposal because it in inelegant (the entire
list of moves must be transmitted each time) and does not allow console play
which I thought was going to be an easy way of debugging my program[18].

Though XBoard is not multi-platform, it is available for Linux, Mac
OSX and Windows.

From the XBoard documentation I also read that XBoard could be used
to play matches between two computers, which is a very attractive feature.
In the end it turned out that this feature is quite limited (for example it is
not possible to give different time or ply depth to the two computers), but
it was useful anyway.

XBoard has a long list of signals that can be exchanged between the chess
program and the board [16]. This protocol is retro-compatible, and works
with any version of GNUChess which makes it quite complex. Recently,
Tim Mann, the author of XBoard has decided to simplify the protocol and
standardise it:

2.6. XBOARD, AN INTERFACE FOR CHESS PROGRAMS 13

“I’ve had to make the protocol description more precise, I’ve
added some features that GNU Chess does not support, and I’ve
specified the standard semantics of a few features to be slightly
different from what GNU Chess 4 does”.

I decided to make my program only compatible with version 2 (the stan-
dardised version) of this protocol. I have fully implemented the protocol,
but not all its features. This is possible thanks to the feature command
that is used to describe to XBoard which of XBoard’s features have been
implemented. See Figure 2.6.

2.6.1 Problems with XBoard

I appreciated having XBoard but I had some problems and disagreements
with XBoard’s design:

• XBoard checks that moves are valid. This means that I could not
play until my program had fully implemented all the rules. I don’t
understand why XBoard does that: one might think an interface is to
do what it is told to do!

• XBoard can do matches between two computers, which I appreciated,
but it is not possible to attribute different search time or search depth
to each program and that really is a feature that I would have liked
to have.

• I also find that the first version of the XBoard protocol is quite messy
and has too many commands. This is due to its retrocompatibil-
ity with all versions of GNUChess. Apart from a full listing of all
commands[16], I didn’t find any website that explained exactly in what
order and under what circumstance the signals would be sent to my
program. I implemented only the commands available in the second
version of the protocol, but my first steps with the XBoard protocol
were quite tough: for example my program would quit unexpectedly,
due to XBoard sending a SIGINT signal used to interrupt searching in
the first versions of GNUChess!

• XBoard has a debug flag that displays debug information. Unfortu-
nately all the information (XBoard specific, GUI interaction, dialogue
with first and second computer) is displayed in the same console and
that makes the whole thing hard to read.

These are the reasons why I designed a simple ASCII interface. If my
program doesn’t receive a xboard signal, it automatically switches to that
interface. That gave me more freedom, and allowed better and easier testing.
In Appendix D you can see the ASCII output of my program.

14 CHAPTER 2. PREPARATION

feature variants=‘‘suicide’’
feature myname=‘‘SuShi Suicide Chess’’

feature time=0 draw=0 reuse=0 analyse=0 colors=0

feature sigint=0 sigterm=0
feature done=1

feature usermove=1 ping=1 setboard=1

accepted/rejected variants
accepted/rejected myname

...

Game initialisation sd depth quit setboard

retract post/nopostundo force

hint

Hint:move

ping n

pong n

bk

usermove move

go

Thinking output Move move

Illegal Move:move

Result result

xboard

protover 2

post/nopost

level

variant suicide

random

new

hard/easy

Game Initialisation

START

XBoard Initialisation

from current position
All available openings

Error(reason):command

Playing a game

Any time (after XBoard Initialisation)

At each my program may receive and/or send Result

Figure 2.6: The XBoard protocol Version 2 (excluding features that I did
not implement). Most commands are presented in Appendix E. For further
explanations read [16, XBoard Chess Engine Communication Protocol]

2.6. XBOARD, AN INTERFACE FOR CHESS PROGRAMS 15

2.6.2 Playing on the FICS

XBoard allows easy interfacing of the Free Internet Chess Server. Using
Zippy, a module in XBoard, it is possible to play on the FICS with a chess
program.

I wanted to use that feature, and I even managed to play a few games
with a guest account, but guest accounts do not provide ranking. I applied
twice (in February and in June) for a computer account and never got an
answer.

16 CHAPTER 2. PREPARATION

Chapter 3

Implementation

3.1 Organisation

Here is the order in which I developed my Suicide Chess program:

• Design an efficient implementation of a board, with the possibility to
add pieces, remove pieces, and move pieces.

• Program a move generation function (that implies an implementation
of the rules of the game). At this stage it was possible to play two
player games using the ASCII interface I developed.

• Implement a computer player that would simply pick random moves
in the list of all legal moves.

• Interface my program with XBoard (which I first intended to do earlier,
but I found out that I needed my program to be able to play).

• Implement the MinMax algorithm, which required designing an eval-
uation function.

• Add a collection of problems that the computer could either load in-
dependently, or play on all of them and then display statistics.

• Implement Alpha-Beta pruning.

• Improve my static evaluation function.

• Add extensions to my program: an Opening Book, Move Ordering,
Iterative deepening with Principal Variation First search, Quiescence
Search, Adaptive Depth, . . . 1

1Note that those extensions are not the ones I originally planned. I chose those because
I found them more interesting for Suicide Chess.

17

18 CHAPTER 3. IMPLEMENTATION

3.2 Type safety

First of all, in order to ensure type safety in my program, I created three
high level types (classes) :

Piece Defines constants for representing each piece. A piece can be defined
(constructed) using its piece number or using its piece type and colour.

Square Defines a square on the board and provides an abstraction for the
bitboard squares (2.4.2). It is defined as a file and a rank. It can be
constructed from another Square, from a String or from a bitboard
square number. A NotAValidSquare exception is thrown when trying
to create illegal squares (like ‘f9’).

Move Defines a representation for moves. It makes use of Piece and Square.
Every instance of a Move is necessarily a valid move2, and an exception
NotAValidMove is thrown otherwise. Eventually a Move holds special
flags saying if the move is a capture, is an en passant capture, sets an
Square for en passant captures or is a promotion (in which case it also
stores the promotion piece).

3.3 Class Board

The class Board I defined has three objectives:

1. Storing the board state (including for example the current player),

2. Storing the board value (static evaluation)3 and the number of moves
that have been made (for draw detection),

3. Applying Moves and update the two points above.

3.3.1 Datafields

I stored the bitboards as an array

1 protected long bitBoards[];

This array has dimensionality 14, holding two “extra” bitboards: White
Pieces and Black Pieces. That will avoid many boolean operations, because
especially in move generation, we often need to know if a square is occupied
by a piece of the opposite colour (a capture) or a piece of the same colour
(blocking sliding pieces).

2Valid move does not necessary mean legal. Moving a pawn from e2 to e5 is possible,
but not legal.

3More about the static evaluation later.

3.3. CLASS BOARD 19

The array is indexed using the Piece number constants defined in the
class Piece. For example bitBoard[Piece.WHITE_PAWN]; would return
the White Pawn bitboard and bitBoard[Piece.BLACK]; would return the
Black Pieces bitboard.
I also used a private int[] numberOfPieces; to store the number of each
pieces. Though it is redundant with information contained in the bitboards,
it allows more efficient evaluation of a board position.
The board also holds a special Square datafield for en passant captures and
two move clocks to be able to tell when there is a draw.

I needed a way to access the ith bit of a number, so I created the
following masks4:

Bit masks
1 protected static long mapSquaresToBits[];

2

3 static {

4 mapSquaresToBits = new long[NB_OF_SQUARES];

5 for(int i=0; i<NB_OF_SQUARES; i++) {

6 mapSquaresToBits[i] = (1L << i);

7 }

8 }

Eventually, I needed a way to get the bit number corresponding to
a Square object:

Mapping from Square to bit number
1 /**

2 * Converts a Square to a number representing a bit

3 */

4 public static int squareToBitBoardSquare(Square square) {

5 return square.getFileNb() -1

6 + (square.getRank()-1)*NB_OF_FILES;

7 }

We can see that for example ‘a1’ will be mapped to 0, the less significant
bit of a bitboard.

4Note that the masks are defined as a static variable. There is no need to have one
instance of those for each instance of a Board: it would be wasting memory, but also time.

20 CHAPTER 3. IMPLEMENTATION

3.3.2 Functions

From all those definitions, the implementation of most of the Board class
functions is often very condensed, like testing if a square is empty (using the
bit masks defined above)

Class Board: isEmpty function
1 /**

2 * Returns a boolean telling if a Piece is on a Square.

3 */

4 public boolean isEmpty(Square square, Piece piece) {

5 //find the mask for the corresponding bit

6 long mask =

7 mapSquaresToBits[squareToBitBoardSquare(square)];

8

9 //AND the mask and the right piece bitboard

10 if ((bitBoards[piece.getPieceNumber()] & mask) == 0) {

11 return true;

12 } else {

13 return false;

14 }

15 }

or adding a piece on the board (using the boolean operation OR)

Class Board: addPiece function
1 protected void addPiece(Square square, Piece piece) {

2 //add Piece to corresponding bitboard.

3 bitBoards[piece.getPieceNumber()]

4 |= mapSquaresToBits[squareToBitBoardSquare(square)];

5

6 //update the bitboard of all pieces of that colour

7 bitBoards[piece.getColor()]

8 |= mapSquaresToBits[squareToBitBoardSquare(square)];

9

10 //update the number of pieces

11 numberOfPieces[piece.getPieceNumber()] += 1;

12 numberOfPieces[piece.getColor()] += 1;

13 }

Note that addPiece is protected. It is not public because for security
reasons, only an instance of a Move applied to the function doMove can be
used to add and remove pieces. It is not private because I used a inherited
version of that class to do testing and debugging.

3.3. CLASS BOARD 21

The main function in the Board class is doMove

doMove(Move) source code
1 public void doMove(Move move) throws NoPieceOnSquare, NotAValidSquare {

2 this.halfmoveClock++;

3

4 if (move.isCaptureMove()) {

5 if (move.isEnPassant()) {

6 removePiece(move.getEnPassantSquare(), move.getCapturedPiece());

7 } else {

8 removePiece(move.toSquare(), move.getCapturedPiece());

9 }

10 //reinitialise halfmoveClock since there has been a capture

11 this.halfmoveClock=0;

12 }

13

14 removePiece(move.fromSquare(), move.getMovingPiece());

15 if (move.isPromotionMove()) {

16 addPiece(move.toSquare(), move.getPromotionPiece());

17 } else {

18 addPiece(move.toSquare(), move.getMovingPiece());

19 }

20

21 if(move.getMovingPiece().getPieceNumber()==Piece.PAWN) {

22 this.halfmoveClock = 0; //a pawn has been moved

23 }

24

25 this.enPassant=false;

26 if (move.enablesEnPassant()) {

27 this.enPassant=true;

28 this.enPassantSquare=move.getEnPassantSquare();

29 }

30

31 if(this.currentPlayer==Piece.WHITE) {

32 this.currentPlayer=Piece.BLACK;

33 } else {

34 this.fullmoveNumber++; //black has just played

35 this.currentPlayer=Piece.WHITE;

36 }

37

38 evaluateNewBoardValue(move);

39 }

22 CHAPTER 3. IMPLEMENTATION

3.3.3 Constructors

A Board can be constructed in three different way.

• With no argument, which creates a Board in the standard chess set-up,

• with another Board as an argument, which does a copy of that board,

• using a FEN5 String.

The third constructor is probably worth exploration: taking a string of the
form6:

FEN notation
1 rank8/rank7/.../rank1 currentPlayer - enPassantSquare

2 halfMoveClock fullMoveNumber

I needed to parse it into a valid Board instance. For example,

1 new Board("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w - - 0 1")

and new Board() must give the same result: the standard board set-up.
To do this parsing, I used Java’s method

split function in class String
1 String[] split(String regex)

that splits a String in an String Array using the separator defined by the
regular expression regex. That function is available since Java 1.4.
The regular expression I used is "/|\\s" which splits the String on every
space or stroke character. I then parse every element in the array (us-
ing String.equals(), Integer.parseInt() and Character.isDigit())
throwing an exception I defined (UnableToParseFENStringException) if
any step failed.

5Forsyth-Edwards Notation: more details on
http://en.wikipedia.org/wiki/Forsyth-Edwards_Notation

6In Chess, the - represent the Castling status, but Castling is not allowed in Suicide
Chess

http://en.wikipedia.org/wiki/Forsyth-Edwards_Notation

3.3. CLASS BOARD 23

3.3.4 Evaluation function

Since the evaluation function is very closely linked to a Board, I decided to
implement it within the Board class.
A positive value for the boardValue means that the position is
evaluated in favour of White.

First Version: number of pieces

In the early days of my program, the evaluation function was really simple,
but probably corresponding pretty well to what a beginner would do.

First evaluation function
1 boardValue = numberOfPieces[Piece.BLACK] - numberOfPieces[Piece.WHITE];

Since the aim of the game is to get rid of all our pieces before the opponent
(ignoring stalemate), it makes sense to just take the difference of the number
of pieces on each side as a reference.

Second Version: piece value

In later versions of the program I decided to add a different value to each
piece. Those value were first stored in the Piece class but then I decided
to create an external configuration file (a textfile) to be able to
change those values and experiment without having to recompile
the program.

The problem, as I presented it in the Preparation is that the pieces
tend to have different values depending on what phase of the game is being
played. I had thus the idea of using two evaluation functions, one for
the endgame and one for the midgame. To detect what phase of the game
was being played, I decided that I would look at the number of pieces the
opponent has as well as the number of pawns (more on that point in the
Evaluation chapter). Those two values are stored in the configuration file
as well.

The board value can be updated in constant time using this method:
whenever a piece is captured, subtract its value.

Third Version: mobility

I read that mobility was a very important criteria in Suicide Chess: for
example it is always good to have more than one choice when you have to
capture.

I used two types of mobility, the primary mobility (how many moves
can I play?) and the secondary mobility (how many moves could I play
if I didn’t have to capture the opponent?). Because of the capture rule,
without the secondary mobility, the value of the mobility was varying too

24 CHAPTER 3. IMPLEMENTATION

much to be used as a reliable indicator of the strength of a position. I think
it is more logical to take into account the mobility of other pieces even if
only a few moves are allowed.

Just like before I separated each of those values in two, one for the
midgame and one for the endgame, storing those four values in the config-
uration file.

Third evaluation function
1 //midgame

2 if (Rules.getLegalMovesCapture().size()!=0) {

3 boardValue+= Rules.getLegalMovesCapture().size()

4 *ConfigFile.getPrimaryMobilityValueMidgame()

5 +Rules.getLegalMovesNonCapture().size()

6 *ConfigFile.getScondaryMobilityValueMidgame();

7 } else {

8 boardValue+= Rules.getLegalMovesNonCapture().size()

9 *ConfigFile.getPrimaryMobilityValueMidgame();

10 }

The main problem with mobility is that updating the board value takes
a lot more time than with the previous evaluation function: when a piece
moves, it changes the mobility of other pieces as well. Having to process the
mobility of each piece every time is not efficient, as opposed to a constant
time complexity in the previous evaluation function, and unfortunately did
not lead to better play as I will see in the evaluation section.

Fourth Version: square value

To keep on improving my evaluation function I decided to analyse Sjeng ’s
source code: Sjeng ’s evaluation function is very complex and relies a lot on
pawn positioning (doubled pawns, passed pawns, . . .). I didn’t have time
to implement all that, but Sjeng has something else I didn’t implement:
square weights. Just like controlling the centre is important in Chess, it is
also quite important in Suicide Chess.

What Sjeng does is multiply the value of each piece by the weight of the
square it is on. I adapted my program to add this feature. Once again the
square weights can be modified from the configuration file.

Unlike mobility, that change does not lead to an strong overhead in
calculating the board value. There is a slight change in that the evaluation
function is updated every time a piece moves and not every time there is
a capture, but updating the value of the board is a matter of subtracting
the weight of the square the pieces comes from, and adding the weight of
the square the pieces goes to. Of course, an extra subtraction is needed
for captures, and promotions are also to be taken separately, but unlike
mobility those operations are done in constant time.

3.3. CLASS BOARD 25

Problem library

To be able to test if my program was improving after each change in
the endgame evaluation function, I created a database of 23 problems (study
positions) found on the Internet (mainly the easy and medium problems from
Goldovski’s Losing Chess page[8]). That technique is called Regression
Testing.
Those problems are stored in an external textfile, in FEN standard notation.
I chose the convention that White would be the winner, having to adapt the
original problem from time to time. You can find the list of problems in the
Appendix F.

My program is able to either load any problem from the default problem
file (or any other file formatted in the same manner) and play from that
position, or to play all problems in turn.

Since I do not have the solutions of the problems, as they are not available
on the Internet and I haven’t solved them all myself, I decided that those
problems would be more “testing positions” than problems. By that I mean
that the computer would play both players, and report every position for
which White didn’t win in the end. It is quite different from problem solving,
but it demonstrates that the computer can take advantage of a
winning position.

26 CHAPTER 3. IMPLEMENTATION

3.4 Rules and Move Generation

3.4.1 Pieces except Pawns

For each piece except the pawns, I used precalculated moves: for every
possible position of a Queen, a Rook, a Bishop, a King and a Knight7 on
the board (64 positions), I have an array of all the Squares they can go
to. This takes a lot of memory (about 5000 integer values), and is surely
less efficient than if I had used rotated bitboards, but it is still much more
efficient than having to process all the legal squares each time.
I didn’t write that database of moves myself, because it does not involve any
programming skills. Instead I used regular expressions to adapt François-
Dominic Laramée[10]’s code. That was possible because the pieces move
in the same way in Chess and Suicide Chess.

The database of moves is stored as a private static int[][][][]

movesAllowed;:

1. The first dimension is indexed using the Piece number. That first
dimension was not in the original database, it is my own idea to avoid
duplicated code.

Example
1 movesAllowed[Piece.QUEEN]

2. The second dimension is the Square number (bit number). For
example, the moves allowed when the Queen is in ‘a1’ are given by:

Example
1 movesAllowed[Piece.QUEEN][0]

3. The third dimension is the ray, ie. one “sliding direction”: one piece is
not allowed to jump over other pieces8, and thus should stop before any
piece of the same colour or on any other piece of the opposite colour.
For example there are only 3 rays in movesAllowed[Piece.QUEEN][0],
the first one being the file a, the second one being the diagonal a1-h8
and the third one being the rank 1.

4. The fourth dimension are the possible destination Squares in one
ray. As the index increase, they move further away from the piece.

7A queen in fact is just the same as a Rook and a Bishop, but this would lead to the
Queen being a special case.

8The Knight is a special case, having only one move in each ray.

3.4. RULES AND MOVE GENERATION 27

To know all the moves from one square for any piece (except the pawn),
I have the following code :

Move generation (pseudo code)
1 given a pieceNumber and a squareNumber;

2 for each ray

3 for each destinationSquare in that ray

4 if there is a piece of the same colour on the destination square

5 break; //don’t slide further in the ray

6

7 create a new Move(fromSquare, destinationSquare);

8

9 if Move is a capture

10 add to list of legal capture moves;

11 break; //don’t go further in the ray

12 else

13 add to list of legal non capture moves;

14 //endfor destinationSquare

15 //endfor ray

3.4.2 Pawn

I implemented the move generation for the pawn by a series of if statements.

• If the pawn is on the rank before last, enable promotion for this pawn’s
move (every move will be converted to 5 moves: promotion to queen,
king, rook, bishop and knight).

• If the pawn is on any file but the first, see if the pawn can capture
left (pieces or en passant Square if the corresponding flag is set in the
current Board class).

• If the pawn is on any file but the last, see if the pawn can capture
right (ibid.).

• If no capture is possible allow moving one square ahead (if no piece is
blocking),

• and if the pawn hasn’t moved yet (if it is on its starting rank) allow
moving two squares ahead (if no piece is blocking). This move sets a
special “en passant” flag.

3.4.3 Storing legal moves

I decided to store legal moves in a List and not an Array as the number or
legal moves can vary quite a lot. Java has two structures, the Vector and
the ArrayList. I decided to use the second as I read that ArrayList is faster
and more efficient (the overhead in Vector is due to the fact that Vector is
synchronised, but I don’t need that in my program).

28 CHAPTER 3. IMPLEMENTATION

I also decided to use two ArrayLists rather than one: one to store the list
of non capture moves and one for the list of capture moves. This representa-
tion is efficient because of the capture rule in Suicide Chess: I can instantly
access the list of compulsory captures if any. Having only one list would
require scanning through all the legal moves which is highly inefficient.

Legal Moves
1 private static ArrayList<Move> legalMovesNonCapture;

2 private static ArrayList<Move> legalMovesCapture;

3.5 XBoard protocol

I could not implement the XBoard protocol earlier because my program
wasn’t able to play. At this point I had it play picking up a random move
in the list of all legal moves.

I created a class called XBoardProtocol to implement the protocol.
Given a command, this class returns a command code. In the core of my
program I then have a switch-case with the corresponding action for each
command. (See Appendix E for a detailed list of implemented commands.)

The only difficulty in that part of the implementation was to understand
what signals XBoard would send to my program, and in what order (cf.
Figure 2.6 in the Preparation chapter).

3.6. SEARCHING 29

3.6 Searching

3.6.1 MinMax

“Make it work before you make it work fast.” – Jon Bentley

The most natural way to implement MinMax is to use recursion and
that is the solution I chose.

MinMax pseudo code
1

2 private bestMovesList;

3

4 private MinMax(Board bitboard, int currentDepth) {

5 if (maximumDepth has been reached)

6 return the boardValue;

7

8 generate the listOfLegalMoves;

9 if (the listOfLegalMoves is empty)

10 if (player is black)

11 return ’blackWins’ value;

12 else

13 return ’whiteWins’ value;

14

15 if (player is black) //trying to minimise

16 bestScoreSoFar = maximum possible score; //whiteWins + 1

17

18 for (each move in listOfLegalMoves)

19 currentScore = MinMax(bitboard.doMove(move),currentDepth+1);

20 if (currentScore <= bestScoreSoFar)

21 if (currentScore < bestScoreSoFar)

22 bestScoreSoFar = currentScore;

23 if (currentDepth is 0)

24 clear bestMovesList;

25 if (currentDepth is 0)

26 add current move to bestMovesList;

27

28 else //currentPlayer is White, trying to maximise

29 bestScoreSoFar = minimum possible score; //blackWins - 1

30 bestMovesList = empty;

31

32 for (each move in listOfLegalMoves)

33 currentScore = MinMax(bitboard.doMove(move),currentDepth+1);

34 if (currentScore >= bestScoreSoFar)

35 if (currentScore > bestScoreSoFar)

36 bestScoreSoFar = currentScore;

37 if (currentDepth is 0)

38 clear bestMovesList;

39 if (currentDepth is 0)

40 add current move to bestMovesList;

41

42 return bestScoreSoFar;

43 }

30 CHAPTER 3. IMPLEMENTATION

This function is private and is accessed using a global function. Given
the list of best moves (bestMovesList) processed by the MinMax function,
that global function returns one move from that list randomly. I chose to
select a random move because I didn’t want my computer to play the same
game every time it gets to a situation when more than one move have the
same value.
This implementation is not conventional. In a classic implementation,
the MinMax would return only one move, but since I wanted to focus my
efforts on non game-specific techniques, my static evaluation function is
fairly crude and, as a consequence, many different positions evaluate to
exactly the same value.
Though it is not conventional, it is not less efficient, and that is why I
adopted that method.

3.6.2 Alpha-Beta pruning

To program Alpha-beta pruning I needed to be able to return more than
one value: I wanted to know not only the value of alpha (or beta, depending
on the current depth), but also the real value of a branch.
Knowing just the value of alpha or beta is not enough: if a branch does
not improve the value of alpha (or beta depending on the branch), it can
either mean that this branch has a move with the same value than a move
previously analysed – in which case this branch should be considered as a
good variation as well – or that the branch has not even reached alpha – in
which case it can be safely ignored.

I created an inner class in my class ComputerPlayer to be able to return
both values. I called it ReturnWrapper. In the following pseudo code, I will
represent those two values as a couple {a,b}.

Alpha-beta pseudo code
1 private bestMovesList;

2

3 private AlphaBeta(Board bitboard, int currentDepth, int alpha, int beta) {

4 if (maximumDepth has been reached)

5 return {boardValue, boardValue};

6

7 generate the listOfLegalMoves;

8 if (the listOfLegalMoves is empty)

9 if (player is black)

10 return {’blackWins’ value, ’blackWins’ value};

11 else

12 return {’whiteWins’ value, ’whiteWins’ value};

13

14 if (player is black) //trying to minimise

15 bestScoreSoFar = maximum possible score; //whiteWins + 1

16

17 for (each move in listOfLegalMoves)

18 {currentScore,currentAlphaBeta}

3.6. SEARCHING 31

19 = AlphaBeta(boardCopy,currentDepth+1,minimum score,beta);

20

21 //calculating new value of beta

22 if (currentAlphaBeta < beta)

23 beta = currentAlphaBeta;

24

25 //calculating branch value

26 if (currentScore <= bestScoreSoFar) {

27 if (currentScore < bestScoreSoFar) {

28 bestScoreSoFar=currentScore;

29 if (currentDepth is 0) {

30 clear bestMovesList;

31 add current move to bestMovesList;

32

33 if(beta<alpha)

34 return (alpha,bestScoreSoFar); //pruning

35 return (beta,bestScoreSoFar);

36

37 else //if (player is white) //trying to maximise

38 bestScoreSoFar = minimum possible score; //blackWins - 1

39

40 for (each move in listOfLegalMoves)

41 {currentScore,currentAlphaBeta}

42 = AlphaBeta(boardCopy,currentDepth+1,minimum score,beta);

43

44 //calculating new value of alpha

45 if (currentAlphaBeta > alpha)

46 alpha = currentAlphaBeta;

47

48 //calculating branch value

49 if (currentScore >= bestScoreSoFar) {

50 if (currentScore > bestScoreSoFar) {

51 bestScoreSoFar=currentScore;

52 if (currentDepth is 0) {

53 clear bestMovesList;

54 add current move to bestMovesList;

55

56 if(beta<alpha)

57 return (beta,bestScoreSoFar); //pruning

58 return (alpha,bestScoreSoFar);

3.6.3 Thinking output

After each call of Alpha-Beta pruning function, my program displays the
best variation found as well as the time taken and the number of nodes exam-
ined, in the format required by XBoard: depth evaluation time nodes

variation.
My program also displays that information each time it finds a better vari-
ation in the Alpha-Beta pruning. A typical output from my program is
available in the Appendix D.

To be able to print the best variation, I needed to store the sequence

32 CHAPTER 3. IMPLEMENTATION

of moves that lead to some score. Since Alpha-Beta pruning is bottom-up,
starting from the leaves and going up to the root, I could simply trace the
best moves from the node up to the root in order to have the best variation
in a branch.
I implemented this by adding a String to my ReturnWrapper. The current
move just has to be concatenated at the beginning of the String for the
variation to be displayed from the root down to the node.

3.6.4 Iterative Deepening and Principal Variation First

Iterative Deepening is programmed by calling the Alpha-Beta pruning func-
tion with increasing maximum depth. I chose to start from 2.

The main interest of Iterative Deepening is to be able to do Principal
variation first search9, ie. analysing the best variation found during the
previous searches before analysing any other variations. This is justified by
the fact that Alpha-Beta pruning is much more efficient if the best moves
are analysed first.
In every step of Iterative Deepening, before starting an analysis to a greater
depth, my program splits the principal variation String into a Move Array.
I added a boolean in the arguments of the alpha-beta pruning function to
tell if the program is currently analysing the principal variation (in which
case the next move in the principal variation must be analysed first) or not
(in which case any move can be analysed first).
The following source code replaces the beginning of the for loop in the
Alpha-beta pruning pseudo code above

Principal Variation First pseudo code
1 if (inPrincipalVariation)

2 doMove principalVariation[currentDepth+1];

3 call alpha-beta with inPrincipalVariation = true;

4

5 for (each legal move)

6 if((inPrincipalVariation) and

7 (move equals principalVariation[currentDepth]))

8 break; //move already analysed

9 doMove move;

10 call alpha-beta with inPrincipalVariation = false;

9Iterative Deepening is also justified by transposition tables[11], but I didn’t implement
those

3.7. EXTENSIONS 33

3.7 Extensions

3.7.1 Opening Book

In Suicide Chess, the opening phase is really important. Out of the 20
possibles moves for white, 7 have been proved to lead to a defeat
as you can see on Cătălin Frâncu’s [3, Suicide Chess Book Browser]. That
is the main reason why I decided to add an Opening Book to my program.
I created a class called OpeningBook.

All known openings are stored in a file, with one opening per line. Each
move is written in Algebraic Notation and is separated from the others by
a space. A typical line would be:

A line from the opening book
1 e2e3 e7e6 d1f3 f8a3 b2a3 d8g5 f3b7 g8g2 b7b8 g2h1

This representation is the same one Sjeng uses, and in fact, I used the same
file as Sjeng.

When loading an opening book file, I parsed the file into a
private static ArrayList<String[]> book; so that book.get(i)[j];

returns the jth move of the ith variant (when the indexing values are de-
fined).
I also used a boolean array that has the same size as the ArrayList above
and is used to tell whether a variation can be played from the current posi-
tion. After each move, the boolean corresponding to each variation that ran
out of move, or each variation that does not correspond to that move that
has been played is changed to false.

This representation does not allow transposition of opening books:
moves have to be played exactly in the order written in the opening book.
For example, if we have the two beginnings shown in Figure 3.1, that end
up in the same position, only the first one would be played by my program
as a known opening. It is important to notice that transpositions are not
as common as they are in Chess since capturing is compulsory.

3.7.2 Quiescence search

In the MinMax search or Alpha-Beta search, the search depth is fixed and
that can cause problems. Typically, in Suicide Chess, if one node of the
search tree has only a few possible moves (typically a few captures), then
those moves should be examined as they will change the material balance
and could be dramatic for one player. This process can be repeated until
the branching factor is more than some chosen value (a quiet position).
This extension has very little cost (since the branching factor is very small)
but leads to a better evaluation since it avoids the horizon effect where
imminent material loss is hidden by the limited depth.

34 CHAPTER 3. IMPLEMENTATION

1. b2–b3 g7–g6
2. c2–c4

or
1. c2–c4 g7–g6
2. b2–b3

rmblkans
opopopZp
0Z0Z0ZpZ
Z0Z0Z0Z0
0ZPZ0Z0Z
ZPZ0Z0Z0
PZ0OPOPO
SNAQJBMR

Figure 3.1: Two opening move sequences leading to the same result

I implemented Quiescence Search so that it can be enabled or disabled
easily, as well as configured (before compilation). In particular, it is possi-
ble to decide the maximum branching factor (capture moves only) and the
maximum depth (to avoid spending too much time looking at very complex
situations).

Quiescence search configuration
1 /**

2 * Enable quiescence search.

3 */

4 public static final boolean QUIESCENCE_SEARCH = false;

5 /**

6 * If more than that many possibilities (branching factor),

7 * don’t analyse further.

8 */

9 public static final int QUIESCENCE_LIMIT = 4;

10 /**

11 * Maximum number of Plies the computer will ever go to

12 */

13 public static final int MAX_QUIESCENCE_DEPTH = 8;

The only change I had to do in Alpha-Beta pruning was adding the fol-
lowing test: when the currentDepth equals the currentMaxDepth10 (and

10The initial value of currentMaxDepth it the current depth in Iterative Deepening

3.7. EXTENSIONS 35

is less than MAX QUIESCENCE DEPTH), I then check if this node is quiet, and
otherwise call the alpha-beta function again with currentMaxDepth+1.

3.7.3 Adaptive Depth search

This is an idea that I had when implementing Quiescence Search: in Suicide
Chess, there are many forced moves, with only one or two possibilities (be-
cause of the capturing rule). Compared to moves with a branching factor
of 20 or more, those moves are going to be examined very quickly. I though
that it then makes sense to search to one ply further in those branches.
I later discovered that there is a similar technique in Chess called “singular
extensions” where certain forced moves are not counted in the ply count.

Also, if the branching factor from the root of the search tree is 1, then
adaptive search would immediately return that move without analysing any
further. This allow for instant response on compulsory moves and avoids
wasting precious seconds in blitz games.

I decided to enable Quiescence Search and Adaptive Depth Search only
during the last step of Iterative Deepening , otherwise, every iteration
in the Iterative Deepening process was very time consuming.

36 CHAPTER 3. IMPLEMENTATION

3.7.4 Move ordering

I implemented move ordering using Java’s Collections.sort(List list,

Comparator c). The sorting algorithm is a modified Merge Sort, which is
an efficient algorithm (order n log(n)).

The List to be sorted is the ArrayList<Move>, but I had to implement
a Comparator:

MoveCompare Class declaration
1 class MoveCompare implements Comparator<Move>

I implemented the constructor so that the order in which the compara-
tor will order moves depends on which player is to play. compare(MoveA,

MoveB) must return a positive number if MoveA is “bigger” than MoveB,
and this leads to the function compare(MoveA, MoveB) being somehow un-
intuitive:

• sort() sorts elements from the “smallest” to the “biggest”,

• if it is White’s turn, then the move with the highest score should be
analysed first,

• so moves with a high score need to be considered “smaller”
than moves with a low score.

Those points lead to the following implementation:

Implementation of compare
1 public int compare(Move one, Move another) {

2 Board oneBoardCopy = new Board(bitboard);

3 Board anotherBoardCopy = new Board(bitboard);

4

5 oneBoardCopy.doMove(one);

6 anotherBoardCopy.doMove(another);

7

8 //sortOrder is defined in the constructor

9 //sortOrder = +1 is white is to play

10 return sortOrder*

11 (anotherBoardCopy.getBoardValue()-oneBoardCopy.getBoardValue());

12 }

Chapter 4

Evaluation

4.1 Efficiency

JMP [2] is a profiler for Java that can be used to trace objects usage and
method timings. I used it on a 4 ply search from a starting position and
got the following statistics (Note that JMP slows the program considerably.
The above values do not directly correspond to the real-time simulation,
however the proportions are correct.)

Looking at the time spent in each method (Figure 4.1) we can see the
the Alpha-Beta method is by far the most time consuming, which is logical
due to its exponential complexity. The Move generation and Evaluation
function come just after, which is also logical.
The only two unexpected methods here are isEmpty and getPiece, that I
would have expected to be more efficient. On the other hand, as I wrote in
the Preparation, I only have a 32 bit architecture and those two functions
use 64 bit boolean operations.

Figure 4.1: Method timings

37

38 CHAPTER 4. EVALUATION

4.2 Evaluation function

My evaluation function has many parameters. I will explain how I chose
each one of them.

In order to decide which one of two different programs or versions is
better I made them play sets of games against another. Modelling the
outcome of each single game using a Bernoulli Distribution, I will justify in
Appendix A how I drew conclusions from the results of those matches.

4.2.1 Evaluation function in the endgame

I read on [14, Pion.ch] that in the endgame: R>K=Q=B>N>P (where N is the
Knight). I translated that to

PAWN QUEEN KING BISHOP KNIGHT ROOK

-90 -40 -40 -40 -70 -10

in my configuration file. The rook has the lowest negative number because
I want the program to try and get rid of other pieces first.

With those values, 11 problems in my list of 23 problems were solved
when searching to depth 4, 15 when searching to depth 6.
I tried other values, for the Queen-King-Bishop value and the Knight value,
but I didn’t find any configuration respecting the order on [14, Pion.ch] that
improved those statistics so I decided to keep the values above.

Also, the very first evaluation function that I programmed, which only
took into account the number of pieces was terrible at solving problems: 9
were solved searching to depth 4 and only 11 when searching to depth 6 so
I decided not to use it either.
To establish that it wasn’t good enough, I played 50 games to ply 6 be-
tween that version and the version above. Results were concluding (see
Appendix A) since my first evaluation function lost 30 games and won 19.

Eventually, although my program has the ability to use square weights
and mobility in the endgame, I opted against using these features in the
endgame since they did not improve the results significantly.

4.2.2 When does the endgame start?

On [14, Pion.ch] again, Fabrice Liardet wrote that the endgame starts
when there are only a few pawns left on the board.

In the beginning, to test whether a position was an endgame position,
I only took into consideration the number of pawns, but this is too weak.
My program would sometimes lose all its pieces and be left with only 4
or 5 pawns: those positions had to be recognised as endgame positions.
I thus decided to added a second parameter: the number of pieces. (See
Appendix B for an example of how this second parameter is important.)

4.2. EVALUATION FUNCTION 39

I chose that 3 pawn or less on either side or 6 pieces or less on either side
is an endgame position. 4 pawns seemed too early to me, and with 2 pawns
only I found that my program often switched to the endgame evaluation
function too late.
To justify this choice, I used “self-play”, playing matches of my program
against itself1 changing only the number of pawns and pieces before switch-
ing to endgame mode.

• The version that switched to endgame when there are less than 2 pawns
or 4 pieces on one side lost 40-60 (and no draw) against the version
that switches when there are less than 3 pawns or 6 pieces.

• The version that switched to endgame when there are less that 4 pawns
or 8 pieces on one side lost 46-53 (and one draw) against the version
that switches when there are less than 3 pawns or 6 pieces.

One could argue that the result of the second match is quite balanced, but
common sense had me decide that a position with 8 pieces on both sides of
the board should not be considered as an endgame position.

4.2.3 Evaluation function in the midgame

Choosing the right evaluation function in the midgame was much harder
than the one in the endgame because I didn’t have any reference talking
about relative strength of each piece.
Moreover since I am not a very good Suicide Chess player, it is hard for me
to tell whether a choice made by one evaluation function will end up being
good in the endgame or bad.
Eventually I didn’t have test positions to do automatic testing like in the
endgame.

To try and overcome that problem, I did matches between different ver-
sions of the evaluation function. The results of those matches are shown
in Figure 4.2. The versions are as follows: (apart from the first one, every
function uses the evaluation function described earlier for the endgame)

1. No evaluation function: the program chooses (random choice) any
valid move.

2. The program uses the number of pieces on each side. I shall refer later
to this version as the Kamikaze Version because it tries to get rid of
all pieces from the very beginning.

3. This version is the same as the Kamikaze Version, but with positive
piece values in the midgame. The exact values will be presented later.

1I chose to use the Cheeseparing Version of the program as it is the one with two very
distinct strategies, cf. later.

40 CHAPTER 4. EVALUATION

Test match: 2 against 1 50-0-0

Test match: 2 against 2 24-25-1

3 against 2 11-39-1

4 against 2 21-28-1

Figure 4.2: Result of matches of different version of my program. The result
are written as: games won by the program in the first program - games won
by the second program - draw

4. That version is the same as the previous one but having different
square weights in the midgame. The square weights are available in
the full configuration file in Appendix C. Those square weight values
come from Sjeng ’s source code. I shall refer to this version later as
the Cheeseparing Version because it tries not to giveaway pieces in the
beginning.

All matches were done with Alpha-Beta Pruning to 6 ply, Principal Variation
First Search and the Opening Book, but no other extension.

The two test matches proves that:

• my evaluation function plays much better than a monkey who just
knows the rules,

• when doing matches between programs of the same level, I get bal-
anced results.

From the two other matches I can conclude that the Kamikaze version
is the best of all. In all further tests I used either that Kamikaze version
or the Cheeseparing Version. I wanted to keep at least two because they
have very different strategies in the midgame which makes it interesting for
further tests.

4.2.4 A closer look at the Cheeseparing Version

The values I used for this version are highly experimental. I analysed games
played by my program against the Kamikaze Version or against Sjeng, and
modified the values in response to bad moves my program made. The values
I chose are:

PAWN QUEEN KING BISHOP KNIGHT ROOK

10 90 70 -10 30 50

For example, if I ended up with a negative value for the bishop since with
any positive value, my program would often loose because of one bishop.

4.3. SEARCH SPEED 41

Also I didn’t put less than -10 otherwise my program was trying too hard
to get rid of his bishop and missed other more important moves. Similarly,
pawns cannot have a higher value otherwise my program would often have
too many pawns in the endgame and they have a very bad mobility.

I am sure that I could have found better values and I would have ap-
preciated the help of a professional player in choosing those values because
I do not know enough theory to justify them. Unfortunately I don’t know
any good Suicide Chess player. I tried to contact Fabrice Liardet with the
address available on his website[14], but I received no answer.

4.2.5 Versions with mobility

I decided to give up the version with mobility because as I said in the
implementation, calculating the mobility is much slower than just having
piece values and square weights. As an example, from a starting position,
searching to depth 6, a version without mobility finds a move in 30seconds
whereas it takes 4 minutes for the version with!
The inefficiency comes from the fact that calculating the mobility involves
running the move generation routine on every leaf node (to be able to get
the evaluation value) when without it, it isn’t necessary.

[10, GameDev.net] explains that for Chess mobility is rarely used as is:
it would more likely penalise Knights near the edge and give a strong weight
to Rooks on open files than simply count the number of moves available on
each side. Probably similar arguments could be found for Suicide Chess,
and it would definitely make the evaluation faster, but I didn’t find any.

4.3 Search Speed

4.3.1 MinMax vs Alpha-Beta

The table Figure 4.3 summarises the number of nodes that are analysed from
a starting position, a typical quiet midgame position, typical explosive2 mid-
dle position, and an endgame position (Figure 4.4). The Alpha-Beta pruning
has no search extension. The value next to the number of nodes is the ratio
(rounded to the nearest integer) of nodes explored to that depth compared
to a search of one ply less. This can be seen as an average branching factor
at that depth.

This table proves that alpha-beta pruning is indeed a very good
improvement, especially when taking into account the fact that the result
from the alpha-beta pruning and the minmax search are the same. Except
in situations where the branching factor is very low, Alpha-Beta pruning
almost always divides this factor by two.

2By explosive I mean that there are forced captures on both sides.

42 CHAPTER 4. EVALUATION

Plies Opening Quiet Explosive Endgame

MM 2 421 462 9 106
AB 2 421 462 9 106

MM 3 8, 488 20 8, 249 18 65 7 2, 163 11
AB 3 4, 659 11 6, 181 13 65 7 169 1

MM 4 161, 787 19 107, 576 13 224 3 15, 474 7
AB 4 55, 696 12 40, 676 7 208 3 1, 479 9

MM 5 2, 894, 459 18 1, 736, 722 16 816 4 157, 336 10
AB 5 382, 243 7 565, 231 14 467 2 6, 346 4

MM 6 49, 158, 621 17 22, 312, 916 13 2, 334 3 1, 095, 856 7
AB 6 5, 117, 764 13 2, 448, 076 4 1, 237 3 21, 717 3

MM 7 N/A N/A 8, 572 4 11, 287, 991 10
AB 7 N/A N/A 1, 958 2 151, 187 7

MM 8 N/A N/A 41, 732 5 N/A
AB 8 N/A N/A 6, 501 3 N/A

Figure 4.3: Comparison of the number of nodes examined by the MinMax
algorithm (MM) and the Alpha-Beta pruning algorithm (AB) in typical
Suicide Chess situations

4.3.2 Alpha-Beta efficiency and move ordering

Now that we have seen that Alpha-Beta is indeed more efficient, let’s look
at the time taken by my program to analyse all those nodes. For this section
I used the Kamikaze version.
In the table Figure 4.5 the times are give in centiseconds. That is what
XBoard asks for in the thinking output formatting[16], and those values
come straight from my program’s output.

We can see that principal variation first search gives much better results
than Alpha-Beta pruning. The time “lost” in doing iterative deepening is
negligible compared to the advantage of examining less nodes. We can see
that in explosive situations and in the endgame it is particularly efficient,
which comes straight from the fact that only a few sequences of moves turn
out to be good.
On the other hand, Move Ordering is incredibly inefficient (in time) and
does not reduce the number or nodes examined much. This is due to the
fact that in the Kamikaze Version, the evaluation value does not change for
as long as there are no captures.

4.4 Problem solving (Search extension efficiency)

As I wrote before, I implemented a collection of 23 problems.
I ran various versions of my program on those problem to see which version
was the best. The results are in the table Figure 4.6. (SuShi is the name I

4.4. PROBLEM SOLVING (SEARCH EXTENSION EFFICIENCY) 43

0mbZqZns
Z0Z0ZkZ0
0ZpZpZ0o
Z0Z0Z0o0
PZ0Z0Z0Z
Z0Z0Z0O0
0Z0OPJ0O
Z0AQZBZR
(a) A typical quiet midgame position

rZ0lkanZ
o0opopo0
PZ0Z0Z0Z
Z0Z0Z0Z0
0Z0O0A0Z
Z0Z0Z0Z0
0OPZPZrZ
ZNZQJBS0

(b) A typical explosive midgame position

0Z0Z0Z0Z
Z0Z0Z0Z0
0ZbZ0Z0Z
Z0Z0Z0Z0
0Z0Z0ZpZ
Z0Z0Z0Z0
NZ0Z0O0Z
Z0Z0S0Z0

(c) A typical endgame position

Figure 4.4: Some test positions

44 CHAPTER 4. EVALUATION

Plies Opening Quiet Explosive Endgame

AB 2 421 0 462 3 9 0 106 0
MO 2 421 14 462 4 9 0 106 0
PV 2 421 1 462 3 9 106 0

AB 3 4, 659 11 6, 181 9 65 0 169 0
MO 3 4, 659 23 6, 181 15 65 0 169 4
PV 3 5, 080 10 6, 643 9 74 0 231 0

AB 4 55, 696 39 40, 676 44 208 2 1, 479 5
MO 4 55, 696 128 40, 670 119 203 3 965 6
PV 4 59, 711 39 47, 036 42 123 0 786 3

AB 5 382, 243 465 565, 231 439 467 2 6, 346 10
MO 5 382, 243 1943 565, 179 1263 461 3 5, 430 31
PV 5 436, 417 439 622, 965 440 234 0 3, 574 6

AB 6 5, 117, 764 4150 2, 448, 076 2893 1, 237 5 21, 717 24
MO 6 5, 117, 764 15318 2, 444, 289 9338 1, 161 6 18, 134 79
PV 6 5, 021, 235 3586 3, 063, 028 3084 682 2 15, 339 16

AB 7 N/A N/A 1, 958 4 151, 187 209
MO 7 N/A N/A 1, 702 6 137, 521 891
PV 7 N/A N/A 1, 885 3 95, 068 104

AB 8 N/A N/A 6, 501 13 N/A
MO 8 N/A N/A 5, 145 24 N/A
PV 8 N/A N/A 5, 337 10 N/A

Figure 4.5: Time (in centiseconds) to generate a move. Comparison of
Alpha-Beta pruning (AB), Move Ordering (MO), and Principal Variation
First Search (PV)

4.5. MATCHES AGAINST SJENG AND KKF 45

Version Unsolved

Sjeng 2

4 Plies 6 Plies

SuShi 12 8

SuShi with Quiescence search 12 6

SuShi with + Adaptive Depth search 10 5

SuShi with Quiescence and Adaptive Depth search 8 6

Figure 4.6: Efficiency in problem solving. The problems are available in
FEN notation in Appendix F

gave to my program).
Adaptive Depth search extends the search each time it reaches a node with
2 or less branches. Quiescence Search extends the final node when it has a
branching factor or 4 or less but never goes to more than an 8 plies search.

This table proves that Quiescence Search and Adaptive Depth are indeed
great improvements. When both are combined, the program becomes as
good as a version that searches two plies further.

4.5 Matches against Sjeng and KKF

4.5.1 Preliminary comments

I tried to play matches with Sjeng against KKFChess but Sjeng kept crash-
ing after the same three moves from KKFChess.

As I wrote before, XBoard cannot give different time control to the two
programs in matches. I thus had to have the same settings for both
programs in a match.
Since KKFChess implements neither time control nor depth limit, I could
not experiment as much as I did with Sjeng, but I wanted to have at least
one other program in my results.
Sjeng is amazingly good at finding killer moves. Most of the time it plays
every move very quickly, but then suddenly stops, thinks for a few seconds,
and this generally means that it has found a winning combination. To
avoid those pauses, I tried to limit Sjeng ’s search depth using XBoard’s
commands, but Sjeng doesn’t seem to have implemented them (the variation
Sjeng displayed were longer than the required depth). Fortunately, Sjeng
implements time control: when I did matches in less that 30 seconds per
game, Sjeng didn’t do those pauses anymore and my program managed to
beat it (Figure 4.8).

46 CHAPTER 4. EVALUATION

Match Time control Result

vs KKFChess

Kamikaze Version, 6 ply 5 min 8-42-0

Cheeseparing Version, 6 ply 5 min 15-34-1
+ Quiescence Search and Adaptive Depth

Kamikaze Version, 6 ply 5 min 23-26-1
+ Quiescence Search and Adaptive Depth

vs Sjeng

Kamikaze Version, 6 ply 5 min 0-50-0

Kamikaze Version, 4 ply 1 min 0-50-0

Kamikaze Version, 4 ply 30 seconds 55-45-0

Kamikaze Version, 4 ply 10 seconds 107-92-1

Figure 4.7: Result of matches between different versions of my program and
Sjeng or KKF

4.5.2 Results

The results of the matches are available in the table Figure 4.7.
As you can see from the table, my program, with search extensions is just

a bit poorer than KKFChess. You can also see how the search extensions
add a lot of strength to my program.

My program simply cannot rival against Sjeng when doing long games,
but it gets very good when playing blitz games.
This victory against an established widely-regarded program in a long match
shows that I have created a highly effective implementation of a Suicide
Chess program by focusing on search techniques.

As little of my time was spent researching and improving the static
evaluation function and as I am not a strong player myself, I believe the
program can be made considerably stronger by adding more game-specific
knowledge: perhaps with the assistance of a strong Suicide Chess player.
However, this was not a priority for this project.

4.5. MATCHES AGAINST SJENG AND KKF 47

Figure 4.8: A 200 games 10 seconds per game match between my Suicide
Chess program djib’s SuShi, Kamikaze Version and Sjeng

48 CHAPTER 4. EVALUATION

Chapter 5

Conclusion

I am very satisfied with my project.
My program has won a 200 blitz games match against Sjeng, one of the

best Suicide Chess programs. This proves that my implementation (includ-
ing my choice of datastructures and search techniques) was very efficient. It
is particularly the case considering that Sjeng is a compiled program devel-
oped in C++ whereas my implementation was written in Java.
I am planning to further improve the efficiency of my program by adding
transposition tables[11], implementing dynamic handling of time, and maybe
rewriting the move generation to use rotated bitboards[6].

During my project I emphasised software engineering techniques rather
that Suicide Chess specific heuristics. I improved my program’s strength us-
ing many Artificial Intelligence techniques, mainly Search Extensions (Adap-
tive Depth Search, Quiescence Search), but also using other techniques such
as an Opening Book. With the help of a professional player, I could greatly
improve my program’s strength by adding more sophistication to the eval-
uation function.

I am pleased that I managed to program a computer player that is now
much better than I am. I also appreciate that most Artificial Intelligence
techniques I used are not specific to Suicide Chess and can be adapted to
most games of perfect information where the two players play in turns.

My program runs on most common Operating Systems, with a user-
friendly interface, and its level can be adapted using a configuration file. I
am planning to combine all those features to get my program running on
my website using an interface I will design.

Finally, I am pleased to see I managed to organise and implement such
a project. I learnt many Software Engineering techniques and I will feel
more confident next time I have to start a project from scratch. This expe-
rience has been a strong complement to the diploma course and I very much
appreciate it.

49

50 CHAPTER 5. CONCLUSION

Bibliography

[1] Chessvariants.org: Loosing chess.
http://www.chessvariants.org/diffobjective.dir/giveaway.html.

[2] Java memory profiler.
http://www.khelekore.org/jmp/.

[3] Cătălin Frâncu.
Suicide chess book browser.
http://catalin.francu.com/nilatac/book.php.

[4] ICGA.
ICGA: Losing Chess Information.
http://www.cs.unimaas.nl/icga/games/losingchess/.

[5] Andrew Frankk.
KKFChess.
http://freespace.virgin.net/andrew.fankk/.

[6] Colin Frayn.
Computer chess programming theory.
http://www.frayn.net/beowulf/theory.html.

[7] Stanislav Goldovski.
Losing chess strategy.
http://www.matf.bg.ac.yu/~andrew/suicide/StanGold/theory.htm.

[8] Stanislav Goldovski.
Stanislav Goldovski’s Losing Chess page.
http://www.matf.bg.ac.yu/~andrew/suicide/StanGold/Index.htm.

[9] Robert Hyatt.
Chess program board representations.
http://www.cis.uab.edu/hyatt/boardrep.html.

[10] François-Dominic Laramée.
Gamedev.net – chess programming.
http://gamedev.net/reference/programming/features/chess1/.

[11] François-Dominic Laramée.
Gamedev.net – chess programming: Transposition tables.
http://www.gamedev.net/reference/programming/features/chess2/

page4.asp.

[12] David Levy.
Computer Gamesmanship – The complete guide to creating an structuring

games programs.
Century Publishing, 1983.

51

http://www.chessvariants.org/diffobjective.dir/giveaway.html
http://www.khelekore.org/jmp/
http://catalin.francu.com/nilatac/book.php
http://www.cs.unimaas.nl/icga/games/losingchess/
http://freespace.virgin.net/andrew.fankk/
http://www.frayn.net/beowulf/theory.html
http://www.matf.bg.ac.yu/~andrew/suicide/StanGold/theory.htm
http://www.matf.bg.ac.yu/~andrew/suicide/StanGold/Index.htm
http://www.cis.uab.edu/hyatt/boardrep.html
http://gamedev.net/reference/programming/features/chess1/
http://www.gamedev.net/reference/programming/features/chess2/page4.asp
http://www.gamedev.net/reference/programming/features/chess2/page4.asp

52 BIBLIOGRAPHY

[13] Richard Lewis.
An introduction to suicide strategy.
http://www.matf.bg.ac.yu/~andrew/suicide/2004/en002.htm.

[14] Fabrice Liardet.
La page de ”qui perd gagne”.
http://www.pion.ch/.

[15] Fabrice Liardet.
Règles internationales du ”qui perd gagne”.
http://www.pion.ch/Losing/rules.html.

[16] Tim Mann.
Xboard chess engine communication protocol.
http://www.tim-mann.org/xboard/engine-intf.html.

[17] Gian-Carlo Pascutto.
Sjeng: a chess-and-variants playing program.
http://sjeng.org/indexold.html.

[18] Aaron Tay.
WinBoard vs UCI.
http://www.aarontay.per.sg/Winboard/uciwinboard.html.

http://www.matf.bg.ac.yu/~andrew/suicide/2004/en002.htm
http://www.pion.ch/
http://www.pion.ch/Losing/rules.html
http://www.tim-mann.org/xboard/engine-intf.html
http://sjeng.org/indexold.html
http://www.aarontay.per.sg/Winboard/uciwinboard.html

Appendix A

Relevance of game statistics

The aim of Appendix A is to give an insight to the game statistics used to
argue that one program is better than the other.

Given two programs A and B, I assume that the games form a Bernoulli
Distribution:

P (A wins) = p̂ P (B wins) = q̂ = 1− p̂ (A.1)

Given a probablility α, I suppose that ‘A better than B’ means:

P (A wins against B) > α (A.2)

I want to know: given n games, what is the probability c of having
A better than B given observation A wins p matches.

c = P

(
A is better than B|P (A wins) = p̂ =

p

n

)
(A.3)

=
n∑

k=bαnc+1

(nk)

(
p

n

)k (1− p
n

)n−k
(A.4)

In other words c is the sum of all probabilities of outcomes where A won
more than α · n games.

Choosing a value for α and given p based on the result of n matches, we
can calculate c.

I programmed it in Python:

Game statistics
1 def factorial(n):

2 if n <= 1: return 1

3 return n*factorial(n-1)

4

5 def combinations(k,n):

6 return factorial(n)/(factorial(k)*factorial(n-k))

7

8

53

54 APPENDIX A. RELEVANCE OF GAME STATISTICS

α p n c Explanation

Test cases

0.5 100 100 1.00% If a program has won all its games (p) then this pro-
gram is surely better.

0.99 50 100 0.00% If a program has to win all its games to be better but
it only won half its games then it has no chance of
being better (it is important to note that this does
not mean that the other one is better).

0.5 50 100 46.02% If I consider a program to be better than another when
it wins strictly more than half the time, then if a
program won just half the games, the probability that
it is indeed better is just less than 1/2.

0.5 51 100 54.00% In the same case, if one program wins just a litte bit
more than half the games, then there is more than 1/2
a chance that the program is indeed better.

50 games

0.5 27 50 66.57%
0.5 30 50 90.22%
0.5 33 50 98.59%
0.5 35 50 99.76%

100 games

0.5 52 100 61.84%
0.5 55 100 81.73%
0.5 58 100 93.50%
0.5 60 100 97.29%

Figure A.1: Relevance of game statistics

9 def relevant(alpha, p, n):

10 """Returns the probability of one program being indeed better.

11 * p number of games won by the program,

12 * alpha is the critical percentage of wins

13 above which I consider a program to be better,

14 * n is the number of games played."""

15

16 sum = 0

17 for k in range(int(alpha*n)+1,n+1):

18 sum += combinations(k,n) * \

19 (float(p)/n)**k * (1-float(p)/n)**(n-k)

20 return sum

Results are held in Figure A.1.

Appendix B

A game between Sjeng and
my program

Here is a game played between my program (Kamikaze version with Quies-
cence Search) and Sjeng. The time control is 10s per player.

1. e2–e3
The most common opening move.
1. . . . e7–e6
2. b2–b3 b7–b6
3. Bf1–a6 Nb8×a6
4. Ng1–h3
Last move from my program’s opening book.

rZblkans
o0opZpop
no0ZpZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
ZPZ0O0ZN
PZPO0OPO
SNAQJ0ZR

4. . . . g7–g5
5. Nh3×g5 Qd8×g5
6. Qd1–g4 Qg5×g4?
A strange move from Sjeng . 6. . . ., Qe3 would have been better. The

55

56 APPENDIX B. A GAME BETWEEN SJENG AND MY PROGRAM

queen is now in a bad position.

rZbZkans
o0opZpZp
no0ZpZ0Z
Z0Z0Z0Z0
0Z0Z0ZqZ
ZPZ0O0Z0
PZPO0OPO
SNA0J0ZR

7. b3–b4!
A very good answer from my program. Instead of trying to get the

queen to capture all its pieces, it also forces either the knight or the bishop
to capture the pawn without having to capture back.

7. . . . Na6×b4
8. c2–c3?
A weak move from my program. The reply 8. . . ., Qg2; 9. b4, Qg1

would have improved the situation for Sjeng .

rZbZkans
o0opZpZp
0o0ZpZ0Z
Z0Z0Z0Z0
0m0Z0ZqZ
Z0O0O0Z0
PZ0O0OPO
SNA0J0ZR

8. . . . Nb4×a2?
Sjeng didn’t see the variation above.
9. Ra1×a2 Qg4×g2

10. Ra2×a7 Ra8×a7
11. Rh1–g1 Qg2×g1
12. Ke1–d1 Qg1×d1

57

13. d2–d3 Qd1×d3
My program now switches to an endgame evaluation because it

has 6 pieces. Note that there are more than 3 pawns on the board.

0ZbZkans
s0opZpZp
0o0ZpZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0OqO0Z0
0Z0Z0O0O
ZNA0Z0Z0

14. Nb1–a3 Bf8×a3
Instead I would have tried to get rid of the queen 14. . . ., Qe3; 15. e3,

Ra3; 16. Ba3, Ba3, leaving white with three pawns but the situation is
desperate for Sjeng anyway.

15. Bc1×a3 Ra7×a3
16. f2–f4 Ka1×c3
17. h2–h3 Qd3×e3
18. h3–h4 Ke2×f4
19. h4–h5
Sjeng resigns (the queen, the knight and the bishop attack h6 so there

is no escape).

0ZbZkZns
Z0opZpZp
0o0ZpZ0Z
Z0Z0Z0ZP
0Z0Z0Z0Z
s0Z0l0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

Appendix C

Configuration file

A typical configuration file
1 This is the configuration file for Sushi chess.

2

3 Separate each value with tabs.

4 If you want to use the program defaults settings,

5 just delete the corresponding three letter acronym.

6

7

8 Pieces value during midgame (pvm)

9 PAWN QUEEN KING BISHOP KNIGHT ROOK

10 pvm 10 90 70 -10 30 50

11

12 Pieces value during endgame (pve)

13 PAWN QUEEN KING BISHOP KNIGHT ROOK

14 pve -90 -40 -40 -40 -70 -10

15

16 Squares weight during midgame (swm)

17 swm

18 -20 -10 -10 -10 -10 -10 -10 -20

19 -13 0 3 5 5 3 0 -10

20 -10 2 15 15 15 15 2 -10

21 -10 7 15 25 25 15 7 -10

22 -10 7 15 25 25 15 7 -10

23 -10 2 15 15 15 15 2 -10

24 -13 0 3 5 5 3 0 -10

25 -20 -10 -10 -10 -10 -10 -10 -20

26

27 Squares weight during endgame (swe)

28 swe

29 10 10 10 10 10 10 10 10

30 10 10 10 10 10 10 10 10

31 10 10 10 10 10 10 10 10

32 10 10 10 10 10 10 10 10

33 10 10 10 10 10 10 10 10

34 10 10 10 10 10 10 10 10

35 10 10 10 10 10 10 10 10

36 10 10 10 10 10 10 10 10

37

58

59

38 Primary and secondary mobility value during midgame (mvm)

39 The primary mobility value is the number of legal moves.

40 The secondary mobility value is all possible but non legal moves.

41 mvm 0 0

42

43 Primary and secondary mobility value during endgame (mve)

44 mve 0 0

45

46 Number of pawn and number or pieces on the opposite team before

47 switching to endgame strategy (npp)

48 npp 3 6

Appendix D

Typical program output

A typical output
1 +---+---+---+---+---+---+---+---+

2 8 |’r’|’n’| | |’k’| |’n’|’r’|

3 +---+---+---+---+---+---+---+---+

4 7 | | |’p’| | |’p’| |’p’|

5 +---+---+---+---+---+---+---+---+

6 6 | | | | |’p’| | | |

7 +---+---+---+---+---+---+---+---+

8 5 | | | | | | | | |

9 +---+---+---+---+---+---+---+---+

10 4 | | | | | | | | |

11 +---+---+---+---+---+---+---+---+

12 3 | | | | | | | P | |

13 +---+---+---+---+---+---+---+---+

14 2 | | | P | N | P | P | | P |

15 +---+---+---+---+---+---+---+---+

16 1 | | | Q | | K | B | |’b’|

17 +---+---+---+---+---+---+---+---+

18 a b c d e f g h

19

20 -> White:

21 2 1000 0 32 c1b1 h1g2

22 2 5000 0 34 c1a1 a8a1

23 2 8000 0 44 f1g2 h1g2

24 2 10000 0 64 e2e4 h1e4

25 2 10000 0 74 e2e4 h1e4

26 3 3000 0 78 e2e4 h1e4 d2e4

27 3 5000 0 101 c1a1 a8a1 e1d1

28 3 8000 2 155 f1g2 h1g2 c1b1

29 3 8000 3 220 f1g2 h1g2 c1b1

30 4 17000 3 298 f1g2 h1g2 e2e4 g2e4

31 4 17000 9 922 f1g2 h1g2 e2e4 g2e4

32 5 17000 9 1076 f1g2 h1g2 h2h3 g2h3 c1b1

33 5 17000 15 2965 f1g2 h1g2 h2h3 g2h3 c1b1

34 6 26000 18 3861 f1g2 h1g2 h2h3 g2h3 g3g4 h3g4

35 6 26000 37 16097 f1g2 h1g2 h2h3 g2h3 g3g4 h3g4

36 Found 1 good moves.

37 move f1g2

60

61

38 +---+---+---+---+---+---+---+---+

39 8 |’r’|’n’| | |’k’| |’n’|’r’|

40 +---+---+---+---+---+---+---+---+

41 7 | | |’p’| | |’p’| |’p’|

42 +---+---+---+---+---+---+---+---+

43 6 | | | | |’p’| | | |

44 +---+---+---+---+---+---+---+---+

45 5 | | | | | | | | |

46 +---+---+---+---+---+---+---+---+

47 4 | | | | | | | | |

48 +---+---+---+---+---+---+---+---+

49 3 | | | | | | | P | |

50 +---+---+---+---+---+---+---+---+

51 2 | | | P | N | P | P | B | P |

52 +---+---+---+---+---+---+---+---+

53 1 | | | Q | | K | | |’b’|

54 +---+---+---+---+---+---+---+---+

55 a b c d e f g h

56

57 -> Black:

Appendix E

Implemented XBoard
commands

Implemented XBoard commands
1 /**

2 * Stops ASCII play

3 */

4 public static final int XBOARD = 0;

5 /**

6 * Protocol version >= 2: changes the way my program and xboard interact

7 */

8 public static final int PROTOVER = 1;

9 /**

10 * Received a ’protover’ < 2

11 */

12 public static final int NOPROTOVER = 2;

13 /**

14 * Starts a new game

15 */

16 public static final int NEW = 3;

17 /**

18 * Quits the program

19 */

20 public static final int QUIT = 4;

21 /**

22 * Received a move

23 */

24 public static final int MOVE = 5;

25 /**

26 * Received an invalid move reply from XBoard

27 */

28 public static final int INVALID = 6;

29 /**

30 * XBoard tells the computer to play the current colour

31 */

32 public static final int GO = 7;

33 /**

34 * XBoard user asks for a Hint

62

63

35 */

36 public static final int HINT = 8;

37 /**

38 * XBoard asks for computer to be put in force mode (check moves but don’t play)

39 */

40 public static final int FORCE = 9;

41 /**

42 * XBoard did not accept sending moves with ’usermove’ command

43 * This is a parameter used when ’protover’ >=2.

44 */

45 public static final int ACCEPTED_USERMOVE = 10;

46 /**

47 * XBoard did not accept variant ’suicide chess’

48 */

49 public static final int NOT_ACCEPTED_SUICIDE = 11;

50 /**

51 * XBoard sent a ping signal

52 */

53 public static final int PING = 12;

54 /**

55 * XBoard sent an Undo signal

56 */

57 public static final int UNDO = 13;

58 /**

59 * Xboard sent a remove signal (treated at two undoes)

60 */

61 public static final int REMOVE = 14;

62 /**

63 * Xboard asks to display thinking output

64 */

65 public static final int POST = 15;

66 /**

67 * Xboard asks NOT to display thinking output

68 */

69 public static final int NOPOST = 16;

70 /**

71 * XBoard changes the board position

72 */

73 public static final int SETBOARD = 17;

74 /**

75 * XBoard sends a signal to change ply depth

76 */

77 public static final int SETPLY = 18;

78 /**

79 * XBoard sends an accepted signal

80 */

81 public static final int ACCEPTED = 19;

82 /**

83 * XBoard sends an ’variant suicide’ signal

84 */

85 public static final int VARIANT_SUICIDE = 20;

86 /**

87 * XBoard sends a book request

88 */

64 APPENDIX E. IMPLEMENTED XBOARD COMMANDS

89 public static final int BOOK = 21;

90 /**

91 * Unknown command

92 */

93 public static final int UNKNOWN = -1;

Appendix F

Suicide Chess problems
(study positions)

My collection of 23 problems
1 # adapted from http://www.matf.bg.ac.yu/~andrew/suicide/2004/en002.htm

2 k7/8/6R1/8/8/8/8/8 w - - 0 1

3 8/8/8/8/8/6R1/p7/8 b - - 0 1

4 1B2R3/1Q6/1N6/7N/3K4/6R1/p7/8 b - - 0 1

5 # from pion.ch

6 8/8/7p/5p2/5P2/4pP1N/4P2P/8 w - - 0 1

7 # from http://www.matf.bg.ac.yu/~andrew/suicide/StanGold/problems.htm

8 # easy

9 8/P7/8/k7/P7/8/8/8 w - - 0 1

10 8/8/8/4b3/8/1R5R/4P3/8 w - - 0 1

11 8/8/p7/8/8/8/7P/8 w - - 0 1

12 8/5p2/7p/8/7P/8/5P2/8 w - - 0 1

13 8/P7/8/8/8/5k2/8/7b w - - 0 1

14 2q5/3k4/8/8/8/5K2/8/8 w - - 0 1

15 8/8/8/6b1/1NR5/8/8/8 w - - 0 1

16 8/P7/8/8/1nn5/8/8/8 w - - 0 1

17 # medium

18 r7/p4P2/P7/2P4p/3PP3/6b1/6B1/8 w - - 0 1

19 8/8/2b5/8/6p1/8/N4P2/4R3 w - - 0 1

20 5B2/3p1k1p/5N2/8/8/8/8/8 w - - 0 1

21 8/8/7N/4n3/3k4/8/4P2K/8 w - - 0 1

22 8/8/8/8/8/3p4/2N5/6N1 w - - 0 1

23 6nk/8/8/8/8/7N/8/8 w - - 0 1

24 8/8/8/1r1P1r2/8/8/1P3P2/8 w - - 0 1

25 8/8/8/8/3p2N1/8/3P4/1R6 w - - 0 1

26 # special case, white draws (easy)

27 B2n4/pP6/1b6/8/8/8/8/8 w - - 0 1

28 # special case, medium draws (medium)

29 8/p1pPn3/p7/8/8/8/8/8 w - - 0 1

30 8/8/4BN2/8/8/8/8/r7 w - - 0 1

65

66 APPENDIX F. SUICIDE CHESS PROBLEMS (STUDY POSITIONS)

Appendix G

Project Proposal

Diploma in Computer Science Project Proposal

Programming a Suicide Chess playing program

djib, Churchill College

Originator: djib

September 25, 2019

Special Resources Required

The use of my own IBM PC (1.3GHz Pentium Centrino, 256Mb RAM and 25Gb Disk).

Project Supervisor: W. Tunstall-Pedoe

Director of Studies: Dr J. Fawcett

Project Overseers: L. Paulson & C. Hadley

67

68 APPENDIX G. PROJECT PROPOSAL

Introduction

Suicide Chess is a chess variant in which the objective is to lose all of your pieces. The
rules of the game are the same as those of chess except for the following additional rules:

1. Capturing is compulsory.

2. When a player can capture, but has different choices to capture a piece, they may
choose among them.

3. The king plays no special role in the game, i.e,

(a) It may be captured like any other piece.

(b) There is no check or checkmate.

(c) Castling is not allowed.

(d) Pawns may also promote to King.

4. In the case of stalemate, the winner is the player who has the smallest number of
pieces. If the number is equal, the game is drawn.

The aim of this project is to program a Suicide Chess computer player.

Work that has to be done

The project breaks down into the following main sections:

1. Reading about the standard techniques and algorithms that are used to program
a chess-playing computer and find ways to adapt them to suicide chess. Learning
about suicide-chess heuristics.

2. Understanding the XBoard1 protocol2 since XBoard will be used as the interface
for the suicide chess program.

3. Implementing a version of the game that checks if the move in a two player game
are valid.

4. Adding a static evaluation function as well as a search function to get the computer
to play.

5. Testing the program by playing against some well known suicide chess programs
like sjeng34 and by giving it puzzles to solve. Those statistics could be used as
criteria to evaluate my project.

6. Eventually considering refinements to the search methods.

Starting Point

The suicide chess program will be programmed from scratch.

1http://www.tim-mann.org/xboard.html
2There are two famous protocols used by chess interfaces. XBoard protocol and Univer-

sal Chess Interface protocol. This project will be using the XBoard protocol because it’s
not possible to play with UCI engines in console mode for testing (or at least not conve-
nient because it is a stateless protocol so it would require entering the whole movelist each
turn!). Moreover XBoard protocol is supported by more GUIs than the UCI protocol.

3Named number one losers/giveaway player on the Internet Chess Club
4sjeng is compatible with the XBoard protocol

69

Resources

I plan to use my own IBM PC. I have an external USB disk that I will be able to use to
do backups twice a week. I also plan to use my PWF account to do backups once every
fortnight.

Work Plan

Planned starting date is 05/12/2005.

December 5th - December 11th

I will start by searching for any previous work on the subject and look for Suicide Chess
theory. I will also read on chess-playing techniques and algorithms : minimax, alpha-
beta pruning, static evaluation functions (material, mobility, centre control), transposition
tables (hashing, Zobrist), quiescence search, singular extensions, etc.

December 11th - December 18th

During this period of time I shall consider how the techniques studied in the previous week
can be adapted to suicide chess. I also plan to spend time to understand XBoard protocol
and try simple examples (sequences of moves) to see how the interface is being used. I
will also try simple examples to see how to play against other suicide chess programs (like
sjeng)5.

January 3rd - January 30th

During January, I plan to start implementing the program. This first version of the
program should be able to check if the moves in a two player game are valid, but will not
be able to play. This involves coding a move generation function (generates a list of legal
moves for a given position), storing the position of the board (and thus deciding what
datastructure to use to hold the position of the bord), . . .

January 31st - March 3rd

In February I will program a static evaluation function (gives a score for the current
position) as well as a basic search function (searches using minimax/alpha-beta pruning
for the best move to play. Use iterative deepening to make best usage of time allocated
to search). At this stage the it should be possible to play against the computer.

February 26th - March 3rd

During this week, while keeping on programming, I will write the ’progress report’.

March 6th - March 31st

In March I want to create a function that tests the level of the computer player by using
some test suite of positions and evaluating the solution time, the percentage of good
moves, . . . I also want to automate playing against other suicide chess programs to be able
to evaluate the level of the computer player by looking at the performance against other
programs.

5I plan to program in Java but if interfacing with other programs is impossible using
that language, I will then choose C++

70 APPENDIX G. PROJECT PROPOSAL

Such a feature will allow fast testing of the performances of the computer player after
major modifications in the source code.

I shall also play a tournament of several hundred games with another program. Create
a large test suite and run program with it giving it different amounts of time per position
to find the best move (e.g. 5 seconds, 30 seconds, 3 minutes, 30 minutes). I will create a
table of scores.

April 17th - May 11th

• Improving the program using move ordering. For example listing moves which
place one of the pieces on a square where it can be captured are probably worth
exploring earlier than others. Similarly capturing low value pieces should be listed
before capturing high value pieces.

• If I have time I would also try to implement a hash table and improve the search
function using search extensions such as intelligent handling of time (ie: spend
more time on moves that seems to be important for the rest of the game), thinking
during your opponent’s time, . . .

I plan to test program after each major change.

June

This is when I plan to write the report.

	Introduction
	Preparation
	Suicide Chess Theory
	Language
	Java
	Eclipse and Subversion

	Chess Programming
	Board representation
	Array representation
	Bitboard representation

	Searching Algorithms
	Evaluation
	Searching and the MinMax algorithm
	Alpha-Beta pruning

	XBoard, an interface for Chess programs
	Problems with XBoard
	Playing on the FICS

	Implementation
	Organisation
	Type safety
	Class Board
	Datafields
	Functions
	Constructors
	Evaluation function

	Rules and Move Generation
	Pieces except Pawns
	Pawn
	Storing legal moves

	XBoard protocol
	Searching
	MinMax
	Alpha-Beta pruning
	Thinking output
	Iterative Deepening and Principal Variation First

	Extensions
	Opening Book
	Quiescence search
	Adaptive Depth search
	Move ordering

	Evaluation
	Efficiency
	Evaluation function
	Evaluation function in the endgame
	When does the endgame start?
	Evaluation function in the midgame
	A closer look at the Cheeseparing Version
	Versions with mobility

	Search Speed
	MinMax vs Alpha-Beta
	Alpha-Beta efficiency and move ordering

	Problem solving (Search extension efficiency)
	Matches against Sjeng and KKF
	Preliminary comments
	Results

	Conclusion
	Bibliography
	Relevance of game statistics
	A game between Sjeng and my program
	Configuration file
	Typical program output
	Implemented XBoard commands
	Suicide Chess problems (study positions)
	Project Proposal

